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ABSTRACT 
St Venant equations form the theoretical basis to hydraulic modeling in the field of  river flow and urban hydraulics. 
Numerical schemes may prove difficult to implement due to the hyperbolic nature of these equations and to the variety of 
configurations met in practice. Existing hydro-informatic software are usually specialized in a given domain. Optimized 
solving schemes are selected to best fit the practical performance which is required in this domain of application. 
In order to meet the needs to a large variety of domains  an original formulation has been developed to solve the full St 
Venant equations in one and two  dimensions, with optional simplifications to optimize some computations, while keeping 
the same code architecture. 
The underlying formulation  is based upon an original method for solving full St Venant equations through finite volume 
space discretization and implicit time marching solving procedure. This method is unconditionally stable, time step is 
variable and is adjusted automatically within calculation in order to preserve numerical accuracy in case of 
discontinuities, such as shock formation.  
This numerical scheme is implemented in Hydra software, which is developed by HYDRATEC. Various 1D and 2D tests, 
dam break problems and recirculation in 2D domains are presented and are compared with other referenced software in 
their respective domain of application, such as Telemac (developed by EDF). 

1 DISCRETIZATION OF  TWO DIMENSIONAL  ST VENANT EQUATIONS AND 
SOLVING PROCEDURE 
St Venant equations are  first expressed in classical integral form within a cell : 
∫ 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑼𝑼Ω𝑖𝑖 𝑑𝑑Ω𝑖𝑖 + ∮ (𝑭𝑭Γ𝑖𝑖

𝑛𝑛𝑥𝑥 + 𝑮𝑮𝑛𝑛𝑦𝑦)𝑑𝑑Γ𝑖𝑖=−∫ 𝑺𝑺𝑓𝑓Ω𝑖𝑖 𝑑𝑑Ω𝑖𝑖 + ∫ ghgrad(zb)Ωi dΩi    with :      (1) 
 

𝑼𝑼 = �
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ℎ
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⎥
⎥
⎤
   

 
Notations are defined in appended glossary.  
Pressure and gravity terms are combined and are approximated as follows :  

∮ (Γ𝑖𝑖

𝑔𝑔
2
ℎ²)𝒏𝒏𝑑𝑑Γ𝑖𝑖 + ∫ ghgrad(zb)dΩiΩ𝑖𝑖

≈ ∑ 𝑔𝑔ℎ𝚤𝚤𝚤𝚤�

2 ∮ �𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖�𝒏𝒏𝑑𝑑Γ𝑖𝑖𝑗𝑗Γ𝑖𝑖𝑖𝑖𝑗𝑗    where ℎ𝚤𝚤𝚤𝚤� = ℎ𝑖𝑖+ℎ𝑖𝑖
2

    (2) 
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This expression is valid as long as differences between  water depths between two adjacent cells 
remain small. It turns out that it remains valid in presence of shocks as will be shown in section 2 
below. 
        

 
Spatial discretization of equation (1) consists in decomposing the whole domain into quadrangular or 
triangular cells and to average components of the unknown U vector within each cell. Connectivity 
condition between cells must be ensured. Equation (1) is   rewritten  as follows in discretized form, 
using the approximation of equation (2) : 
 
𝐴𝐴𝑖𝑖

𝜕𝜕𝑼𝑼𝒊𝒊
𝜕𝜕𝜕𝜕

+ 𝐴𝐴𝑖𝑖𝑺𝑺𝑓𝑓𝑖𝑖 + ∑ �𝑭𝑭𝑛𝑛𝑥𝑥 + 𝑮𝑮𝑛𝑛𝑦𝑦�𝑗𝑗 𝑙𝑙𝑖𝑖𝑗𝑗 = 0       (3)      where : 

𝐅𝐅 = �

𝑞𝑞𝑥𝑥
𝑞𝑞𝑥𝑥²
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+ 0.5𝑔𝑔ℎ𝚤𝚤𝚤𝚤��𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖�
𝑞𝑞𝑥𝑥𝑞𝑞𝑦𝑦
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𝑞𝑞𝑦𝑦²
ℎ

+ 0.5𝑔𝑔ℎ𝚤𝚤𝚤𝚤��𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖�⎦
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⎥
⎤
 

  
The terms ∑ �𝑭𝑭𝑛𝑛𝑥𝑥 + 𝑮𝑮𝑛𝑛𝑦𝑦�𝑗𝑗 𝑙𝑙𝑖𝑖𝑗𝑗 ≡ Fluxij   represent the flux terms across two adjacent cells. 
 
This alternative formulation yields following advantages : 

- gravity terms are source terms but they are included in the line  integral terms F and G which 
are expressed along each cell boundary : expression (3) is best fitted to link together equations 
between different domains, such as 2D and 1D domain. Linkage is provided by  the flux terms 
Fluxij   which have different expressions according to the physical link type. It is also easy to 
combine simplified and complete formulations within a model. Simplified treatment of a sub 
domain just requires to ignore the convective terms in vectors  F and G. 

- It provides numerical robustness, 
- It is easy to introduce singularities within adjacent cells. 

 
Within a 2D domain the flux components are treated by : 

- centered formulation for the volume fluxes, 
- upwind formulation for the momentum fluxes. 

 

𝑭𝑭𝒊𝒊𝒊𝒊.𝑛𝑛𝑥𝑥 + 𝐆𝐆𝒊𝒊𝒊𝒊.𝑛𝑛𝑦𝑦 = �
0.5(𝑞𝑞𝑖𝑖 + 𝑞𝑞𝑗𝑗)

𝜶𝜶𝑖𝑖𝑢𝑢𝑥𝑥𝑖𝑖𝑞𝑞𝑖𝑖 + 𝜶𝜶𝑗𝑗𝑢𝑢𝑥𝑥𝑗𝑗𝑞𝑞𝑗𝑗
𝜶𝜶𝑖𝑖𝑢𝑢𝑦𝑦𝑖𝑖𝑞𝑞𝑖𝑖 + 𝜶𝜶𝑗𝑗𝑢𝑢𝑦𝑦𝑗𝑗q𝑗𝑗

�+�
0

0.5𝑔𝑔ℎ𝚤𝚤𝚤𝚤��𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖�𝑛𝑛𝑥𝑥
0.5𝑔𝑔ℎ𝚤𝚤𝚤𝚤��𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑖𝑖�𝑛𝑛𝑦𝑦

�    with :  

 

 �
𝑢𝑢𝑥𝑥𝑖𝑖
𝑢𝑢𝑦𝑦𝑖𝑖� : average flow velocity within one cell i 

 
𝑞𝑞𝑖𝑖 ≜ q𝑥𝑥,𝑖𝑖.𝑛𝑛𝑥𝑥 + q𝑦𝑦,𝑖𝑖.𝑛𝑛𝑦𝑦      
𝑞𝑞𝑗𝑗 ≜ q𝑥𝑥,𝑗𝑗 .𝑛𝑛𝑥𝑥 + q𝑦𝑦𝑗𝑗 .𝑛𝑛𝑦𝑦 
 
 

hi

Mesh i
Mesh j

hj

zi
zj

�𝛼𝛼𝑖𝑖 = 1 si 𝑞𝑞𝑖𝑖 > 0 
𝛼𝛼𝑖𝑖 = 0  si 𝑞𝑞𝑖𝑖 < 0  

 

𝛼𝛼𝑗𝑗 = 1 si 𝑞𝑞𝑗𝑗 > 0 
𝛼𝛼𝑗𝑗 = 0  si 𝑞𝑞𝑗𝑗 < 0  
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Time integration of equation (3) is treated in a fully implicit way :  
 
Flux terms : 

𝑭𝑭𝑖𝑖𝑗𝑗𝑛𝑛+1 = 𝐹𝐹𝑖𝑖𝑗𝑗𝑛𝑛 + �𝜕𝜕∆𝐹𝐹𝑖𝑖𝑖𝑖
𝜕𝜕∆𝑈𝑈𝑖𝑖

� ∆𝑼𝑼𝑖𝑖 +  �𝜕𝜕∆𝐹𝐹𝑖𝑖𝑖𝑖
𝜕𝜕∆𝑈𝑈𝑖𝑖

� ∆𝑼𝑼𝑗𝑗         

𝑮𝑮𝑖𝑖𝑛𝑛+1 = 𝐆𝐆𝑖𝑖𝑛𝑛 + �𝜕𝜕∆𝐺𝐺𝑖𝑖𝑖𝑖
𝜕𝜕∆𝑈𝑈𝑖𝑖

� ∆𝑼𝑼𝑖𝑖 +   �𝜕𝜕∆𝐺𝐺𝑖𝑖𝑖𝑖
𝜕𝜕∆𝑈𝑈𝑖𝑖

� ∆𝑼𝑼𝑗𝑗   

𝐔𝐔𝒊𝒊𝒏𝒏+𝟏𝟏 = 𝐔𝐔𝐢𝐢𝒏𝒏 + ∆𝐔𝐔𝐢𝐢 
𝐔𝐔𝒊𝒊𝒏𝒏+𝟏𝟏 = 𝐔𝐔𝐣𝐣𝒏𝒏 + ∆𝐔𝐔𝐣𝐣 
 

The Jacobian matrices : �𝜕𝜕∆𝐹𝐹𝑖𝑖𝑖𝑖
𝜕𝜕∆𝑈𝑈𝑖𝑖

�, �𝜕𝜕∆𝐹𝐹𝑖𝑖𝑖𝑖
𝜕𝜕∆𝑈𝑈𝑖𝑖

� , �𝜕𝜕∆𝐺𝐺𝑖𝑖𝑖𝑖
𝜕𝜕∆𝑈𝑈𝑖𝑖

� , �𝜕𝜕∆𝐺𝐺𝑖𝑖𝑖𝑖
𝜕𝜕∆𝑈𝑈𝑖𝑖

� are ranked 3x3  et contain differentiated terms  

with respect to natives variables defined in vector U 

 
Inertia term: 
𝐴𝐴𝑖𝑖

𝜕𝜕𝑼𝑼𝒊𝒊
𝜕𝜕𝜕𝜕

= 𝐴𝐴𝑖𝑖
𝑑𝑑𝜕𝜕

 ∆𝐔𝐔𝐢𝐢  
 
Friction term : 
𝑺𝑺𝑓𝑓i𝑛𝑛+1 = 𝑺𝑺𝑓𝑓𝑖𝑖𝑛𝑛 + �𝜕𝜕∆𝑺𝑺𝑓𝑓𝑖𝑖

𝜕𝜕∆𝑼𝑼𝑖𝑖
� ∆𝑼𝑼𝑖𝑖 

 
The final set of equations to be solved at each time step is put in matrix form : 
⌊𝑀𝑀𝑖𝑖𝑖𝑖⌋∆𝑼𝑼𝑖𝑖 + ∑ �𝑲𝑲𝑖𝑖𝑗𝑗�𝑗𝑗 ∆𝑼𝑼𝑖𝑖 = 𝑭𝑭𝑖𝑖   (4) 
 
In practice this matrix system is formed by calculating contribution of each boundary to flux terms, 
then contributions of volume terms within each cell. 
Solution of matrix system (4) is calculated using Pardiso  Matrix Solver. 
 
This formulation encompasses the 1D case, it can therefore be specialized to 1D problems or extended 
to mixed problems including 1D and 2D  sub domains within a model without difficulty. 

2. SHOCK CAPTURE 
The above formulation is based on native conservation  laws of hyperbolic St Venant equations. It 
contains all the terms which are supposed to produce discontinuities depending on  physical 
configurations. In order to demonstrate the ability of the above algorithm to describe shocks the 
restricted 1D case with 3 adjacent cells is considered : 
 

 
The discretized equation (3) along the x axis is written as follows in  steady state flow regime for the 
cell M2. The following equation is obtained by neglecting friction terms : 
 
−𝑄𝑄𝑢𝑢1 + 𝑄𝑄𝑢𝑢2 + 𝑔𝑔

2
 (𝑧𝑧2 − 𝑧𝑧1)ℎ12 + 𝑔𝑔

2
 (𝑧𝑧3 − 𝑧𝑧2)ℎ23 = 0  (5) 

 
ℎ12 = 0.5(ℎ1 + ℎ2)       
 

M1 M2 M3

    ℎ23 = 0.5(ℎ2 + ℎ3) 
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Let us assume that a hydraulic jump occurs between cell 1 and 2 :  
One has :  𝑧𝑧2 ≈ 𝑧𝑧3   

 
 
Equation (5)  becomes : 
−𝑄𝑄𝑢𝑢1 + 𝑄𝑄𝑢𝑢2 + 𝑔𝑔

2
 (ℎ2 − ℎ1)ℎ12 = 0          

𝑄𝑄𝑢𝑢2 + 𝑔𝑔
2

 ℎ1ℎ12 = 𝑄𝑄𝑢𝑢1 + 𝑔𝑔
2

 ℎ2ℎ12   (6) 
 
Equation (6) describes a jump equation which is linearized with respect to term ℎ12 . This shows that 
our formulation allows to capture shocks, albeit introduction of some distortion for strong shocks. 
The practical validity or this simplification is discussed with the tests case presented in chapter 4.  
The above analysis can be extended  easily to transient shock waves, such as in the dam break 
problem, by taking in account the inertia terms of equation (3) : it can be  checked that the right 
expression for the shock velocity of the moving shock wave is obtained. 
This  shock analysis can extended to the 2D case. A further simplification is introduced by assuming 
that  the local direction of a 2D shock wave is perpendicular to the boundary between two adjacent 
cells. Starting from equation (3) one obtains the equations for the oblique hydraulic jump, assuming 
that the boundary line between two cells is a shock line. This  additional assumption yields wrong 
results locally but it has been found that the distortion levels out when one considers the resulting 
wave pattern on a scale involving a few cells together. 

3. EXTENDED  FORMULATION WITH  HYDRAULIC SINGULARITIES 
So far the formulation above applies to an homogenous 2D domain : two adjacent cells are connected 
by relations involving flux terms. It is fairly straightforward to generalize this concept by adapting 
the flux terms to hydraulic exchange laws involving singular head losses: 
 
 

 

h1 h2
h3

z1

z2
z3

Q   ( flow rate)

Exchange between the two cells is controlled 
by the flow rate Q et the momentum flux 
vector F. In case of a singularity linking the 
cells, Q and F are expressed as : Q(Hi, Hj) and 
F(Hi, Hj) where H stands for the averaged total 
head within one cell. The expressions for Q 
and F depend on the nature of the singularity. 
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Assuming a flow from cell i to cell j the flux 
 leaving cell i is written as :  

�𝑭𝑭𝑭𝑭𝑼𝑼𝑭𝑭𝑖𝑖𝑗𝑗 � =  �

Q
𝑞𝑞𝑖𝑖𝑢𝑢𝑖𝑖
𝑞𝑞𝑖𝑖𝑣𝑣𝑖𝑖

� 

 
As an example the gate let us consider  the gate type singularity which is governed by a variety of 
laws according to the gate geometry and hydraulic upstream and downstream conditions. 
 

 
Figure 1 : definition sketch for the gate/weir singularity 
 
Next diagrams illustrates all the laws which govern this singularity and the range of validity of each. 
The flow equations are defined such that flow continuity is ensured at every transition between two 
flow regimes. Equations are given below for 4 basic regimes: 
 

Weir flow regime:   𝐻𝐻1 − 𝑝𝑝1 < 3
2
ℎ𝑣𝑣 :  

 𝑄𝑄𝑄𝑄𝐷𝐷 =
2
3
𝐶𝐶𝑐𝑐𝑏𝑏�2𝑔𝑔(𝐻𝐻1 − 𝑝𝑝1)

3
2 

 𝑄𝑄𝑄𝑄𝑁𝑁 = 𝑏𝑏�2𝑔𝑔[(𝐻𝐻1 − 𝑝𝑝1) − (𝐻𝐻2 − 𝑝𝑝2)]
1
2(𝐻𝐻2 − 𝑝𝑝2)  

 
Gate flow regime: 𝐻𝐻1 − 𝑝𝑝1 > 3

2
ℎ𝑣𝑣 

 
 𝑄𝑄𝑄𝑄𝐷𝐷 = 𝑏𝑏𝐶𝐶𝑐𝑐ℎ𝑣𝑣�2𝑔𝑔(𝐻𝐻1 − 𝑝𝑝1) 
 
𝑄𝑄𝑄𝑄𝑁𝑁 = 𝐾𝐾𝑏𝑏ℎ𝑣𝑣�2𝑔𝑔((𝐻𝐻1 − 𝑝𝑝1) − (𝐻𝐻2 − 𝑝𝑝2))1/2 

Figure 2: delimitation of flow regimes for the gate/weir singularity 
 
Special consideration must be given to the momentum flux just downstream of the gate. Iterative 
calculations are necessary to determine the proper  flow regime and to apply the corresponding flow 
equations. 
In case of an incident flow oblique to the gate the upstream momentum flux vector is decomposed 
into two components, one normal to the gate, the other one parallel to the gate. The flux parallel to 
the gate is supposed unchanged, while the other flux component is treated by the 1D gate equation 
system. 
 

And the flux entering flux j is written as :  
 

�𝑭𝑭𝑭𝑭𝑼𝑼𝑭𝑭𝑗𝑗𝑖𝑖� =  �
−Q
−𝐹𝐹𝑥𝑥
−𝐹𝐹𝑦𝑦

�     
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3. BENCHMARKING 
The above formulation has been implemented into the Hydra  computational software and has been 
evaluated against analytical solutions, field data and existing referenced codes such as Telemac ( 
EDF) and Rubard (IRSTEA). Some selected examples are presented below to demonstrate the 
capabilities of the code: 

3.1 Hydraulic jump in rectangular channel 

Channel width is discretized into 3 meshes 5m each. Channel length is discretized into 60 meshes : 
- 20 cells 10x5m in the upstream part of the canal which has a 2% slope, 
- 40 cells 5x5m in the downstream part which is flat. 

Flow rate is 60 m3/s. Figure below shows the computed water profile along the centerline. It is 
compared with the analytical solution: 
 

 
Figure 3: water profile elevation along a rectangular channel : computed and analytical solutions 
 
The two curves are in good agreement, given the spatial discretization used for the computations. 
Difference on the upstream end is due to the fact that no  upstream limit condition is imposed : the 
code selects critical flow regime. The water profile then connects gradually towards uniform flow.  

3.2 flow past a gate 

Channel discretization and flow conditions are the same as above but a gate is introduced at abscissa 
0.4km. Gate opening depth is 50cm. the graph below shows the computed water profiles using 
complete formulation and simplified formulation ( without convective terms) : 
  

Analytical solution

Canal invert

2D simulation
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Ca
na
l 

in
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rt

Canal invert

Complete numerical solution

Simplified numerical solution

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  computed water profile elevation along a rectangular channel with a gate singularity 
 
Water profile computed with the full equations exhibits a hydraulic jump in the upper section of the 
channel and another one about 25m downstream of the gate. The flow past the gate is not influenced 
by the downstream conditions. In the simplified calculations convective terms are ignored :  super 
critical flow is not modelled, which results in a significant over estimates of the water profiles 
upstream of the gate.  

3.3 2D flow in a river past a navigation weir. 

A section of the Aisne river has been modelled to analyze velocity field past a navigation weir and to 
investigate resulting geo-morphological consequences. The model consists of about 10000 meshes 
arranged as follows: 
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hydra code 

 
Figure 5 :  2D meshing for the river modelling pas a navigation weir 
 
The weir is closed except along a 25m section next to the right bank. It is oblique to the upstream 
flow. River flow rate is 100 m3/s. The weir elevation is adjusted so that the flow past it is critical. 
A close up view of the flow  velocity distribution is shown below : 

 
Figure 6 :  flow distribution  computed by hydra numerical code 
 
One can see clearly the two recirculation zones induced by the jet flux past the weir. This pattern was 
actually observed on the site. The same calculations was performed using Telemac code. The 
computed flow distribution exhibit a very similar pattern as shown below. In the Telemac model  the 
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Telemac 
code 

mesh size around the weir is much more refined than in the Hydra model because the weir is modelled 
as a geometric singularity : it is totally immerged within the 2D meshing. 
 
 

 
Figure 7: flow distribution  computed by telemac numerical code 
 

3.4 Transient dam break problem in a rectangular channel. 

This problem is classic and has an analytical solution. The case investigated is defined by the 
following definition sketch : 

 
Figure 8 : definition sketch for the dam break problem 
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Initially  water depth is 5m upstream of the dam and 1m downstream. The dam breaks at time=0. 
Figures below show the longitudinal water and velocity profiles along the canal at time t = 
288seconds.  
 

 
 

 
Figure 9 : water elevation and velocity profiles at time 288seconds after sudden dam break. 
 
Examination of these graphs show near perfect agreement between computation and analytical 
solution.  
This good agreement suggests that the approximation introduced in equation (3) is valid to solve 
practical problems involving shocks. 
  

Numerical solution
Analytical solution
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4 DISCUSSION AND CONCLUSION 
The  implicit formulation presented in this paper to solve full equations of free surface flow is believed 
to mark a progress which departs from existing methods. It combines several advantages: 
unconditional  numerical stability, computational robustness, accuracy, flexibility for solving 
problems in a wide variety of fields: estuary and  river hydraulics, flood propagation and networks 
hydraulics. Finite volume formulation is based on the native conservative form of the St Venant 
equations  without any assumptions on the solution structure across  a hydraulic shock. It includes 
any kind of hydraulics singularities in transient as well as steady state flow regimes and to combine 
simplified and full resolution of equations in the same model. Formulation is also quite suited to 
model 1D-2D interactions within a single model. 
Calculations are fast: inclusion of singularities and constraints lines into a model enables to choose  
fairly loose meshing as compared with full 2D codes for the same accuracy. This results in 
considerable time savings in computations. 
This  upgraded formulation is implemented into Hydra software and has shown  particular efficiency 
in all modelling problems involving floods and inundations in urban areas. Hydra is now coupled to 
a user’s interface immerged in the Open Source Qgis GIS ( ref[4]).  Coupling between this interface 
and the computational code, should make Hydra attractive among the hydro informatic software 
available on the market. 
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GLOSSARY 
 ( ux  uy )      :  velocity components in the x and y direction. 
 g                 :  acceleration of gravity 
 h                 :  water depth 
hi                 :  mean water depth within cell i 
lij                  :  segment length between two adjacent cells 
Ai                          :   cell area 
zb                          :  bottom elevation 
U                 :  vector composed of unknown variables ( h   qx  qy )    
( qx  qy )       :   = ( hux    huy ) 
H                  :  pressure head =  ℎ +  𝑢𝑢𝑥𝑥2+𝑢𝑢𝑦𝑦2 

2𝑔𝑔
 

𝑺𝑺𝑓𝑓                :  bottom friction vector with components : 
 𝑆𝑆𝑓𝑓,𝑥𝑥 = 𝑔𝑔ℎ (𝑛𝑛²𝑥𝑥𝑢𝑢𝑥𝑥�𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2   ℎ−4/3) et  𝑆𝑆𝑓𝑓,𝑦𝑦 = 𝑔𝑔ℎ(𝑛𝑛²𝑦𝑦�𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2   ℎ−4/3) 
( nx  ny  )     :  Manning coefficients in  Ox et Oy direction. 
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